1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
// Copyright 2023 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
//! # pw_varint
//!
//! `pw_varint` provides support for encoding and decoding variable length
//! integers. Small values require less memory than they do with fixed
//! encoding. Signed integers are first zig-zag encoded to allow small
//! negative numbers to realize the memory savings. For more information see
//! [Pigweed's pw_varint documentation](https://pigweed.dev/pw_varint).
//!
//! The encoding format used is compatible with
//! [Protocol Buffers](https://developers.google.com/protocol-buffers/docs/encoding#varints).
//!
//! Encoding and decoding is provided through the [VarintEncode] and
//! [VarintDecode] traits.
//!
//! # Example
//!
//! ```
//! use pw_varint::{VarintEncode, VarintDecode};
//!
//! let mut buffer = [0u8; 64];
//!
//! let encoded_len = (-1i64).varint_encode(&mut buffer).unwrap();
//!
//! let (decoded_len, val) = i64::varint_decode(&buffer ).unwrap();
//! ```
#![cfg_attr(not(feature = "std"), no_std)]
use core::num::Wrapping;
use pw_status::{Error, Result};
/// A trait for objects than can be decoded from a varint.
///
/// `pw_varint` provides implementations for [i16], [u16], [i32], [u32],
/// [i64], and [u64].
pub trait VarintDecode: Sized {
/// Decode a type from a varint encoded series of bytes.
///
/// Signed values will be implicitly zig-zag decoded.
fn varint_decode(data: &[u8]) -> Result<(usize, Self)>;
}
/// A trait for objects than can be encoded into a varint.
///
/// `pw_varint` provides implementations for [i16], [u16], [i32], [u32],
/// [i64], and [u64].
pub trait VarintEncode: Sized {
/// Encode a type into a varint encoded series of bytes.
///
/// Signed values will be implicitly zig-zag encoded.
fn varint_encode(self, data: &mut [u8]) -> Result<usize>;
}
macro_rules! unsigned_varint_impl {
($t:ty) => {
impl VarintDecode for $t {
fn varint_decode(data: &[u8]) -> Result<(usize, Self)> {
let (data, val) = decode_u64(data)?;
Ok((data, val as Self))
}
}
impl VarintEncode for $t {
fn varint_encode(self, data: &mut [u8]) -> Result<usize> {
encode_u64(data, self as u64)
}
}
};
}
macro_rules! signed_varint_impl {
($t:ty) => {
impl VarintDecode for $t {
fn varint_decode(data: &[u8]) -> Result<(usize, Self)> {
let (data, val) = decode_u64(data)?;
Ok((data, zig_zag_decode(val) as Self))
}
}
impl VarintEncode for $t {
fn varint_encode(self, data: &mut [u8]) -> Result<usize> {
encode_u64(data, zig_zag_encode(self as i64))
}
}
};
}
unsigned_varint_impl!(u8);
unsigned_varint_impl!(u16);
unsigned_varint_impl!(u32);
unsigned_varint_impl!(u64);
signed_varint_impl!(i8);
signed_varint_impl!(i16);
signed_varint_impl!(i32);
signed_varint_impl!(i64);
fn decode_u64(data: &[u8]) -> Result<(usize, u64)> {
let mut value: u64 = 0;
for (i, d) in data.iter().enumerate() {
value |= (*d as u64 & 0x7f) << (i * 7);
if (*d & 0x80) == 0 {
return Ok((i + 1, value));
}
}
Err(Error::OutOfRange)
}
fn encode_u64(data: &mut [u8], value: u64) -> Result<usize> {
let mut value = value;
for (i, d) in data.iter_mut().enumerate() {
let mut byte: u8 = (value & 0x7f) as u8;
value >>= 7;
if value > 0 {
byte |= 0x80;
}
*d = byte;
if value == 0 {
return Ok(i + 1);
}
}
Err(Error::OutOfRange)
}
// ZigZag encodes a signed integer. This maps small negative numbers to small,
// unsigned positive numbers, which improves their density for LEB128 encoding.
//
// ZigZag encoding works by moving the sign bit from the most-significant bit to
// the least-significant bit. For the signed k-bit integer n, the formula is
//
// (n << 1) ^ (n >> (k - 1))
//
// See the following for a description of ZigZag encoding:
// https://protobuf.dev/programming-guides/encoding/#signed-ints
fn zig_zag_encode(value: i64) -> u64 {
((value as u64) << 1) ^ ((value >> (i64::BITS - 1)) as u64)
}
fn zig_zag_decode(value: u64) -> i64 {
let value = Wrapping(value);
((value >> 1) ^ (!(value & Wrapping(1)) + Wrapping(1))).0 as i64
}
#[cfg(test)]
mod test {
use super::*;
fn success_cases_u8<T>() -> Vec<(Vec<u8>, T)>
where
T: From<u8>,
{
vec![
// From varint_test.cc EncodeSizeUnsigned32_SmallSingleByte.
(vec![0x00], 0x00.into()),
(vec![0x01], 0x01.into()),
(vec![0x02], 0x02.into()),
// From varint_test.cc EncodeSizeUnsigned32_LargeSingleByte.
(vec![0x3f], 0x3f.into()),
(vec![0x40], 0x40.into()),
(vec![0x7e], 0x7e.into()),
(vec![0x7f], 0x7f.into()),
// From varint_test.cc EncodeSizeUnsigned32_MultiByte.
(vec![0x80, 0x01], 128.into()),
(vec![0x81, 0x01], 129.into()),
// From https://protobuf.dev/programming-guides/encoding/.
(vec![0x96, 0x01], 150.into()),
]
}
fn success_cases_i8<T>() -> Vec<(Vec<u8>, T)>
where
T: From<i8>,
{
vec![
// From varint_test.cc EncodeSizeSigned32_SmallSingleByte.
(vec![0x00], 0i8.into()),
(vec![0x01], (-1i8).into()),
(vec![0x02], 1i8.into()),
(vec![0x03], (-2i8).into()),
(vec![0x04], 2i8.into()),
// From varint_test.cc EncodeSizeSigned32_LargeSingleByte.
(vec![125], (-63i8).into()),
(vec![126], (63i8).into()),
(vec![127], (-64i8).into()),
// From varint_test.cc EncodeSizeSigned32_MultiByte.
(vec![0x80, 0x1], 64i8.into()),
(vec![0x81, 0x1], (-65i8).into()),
(vec![0x82, 0x1], 65i8.into()),
]
}
fn success_cases_u32<T>() -> Vec<(Vec<u8>, T)>
where
T: From<u32>,
{
vec![
// From varint_test.cc EncodeSizeUnsigned32_MultiByte.
(vec![0xfe, 0xff, 0xff, 0xff, 0x0f], 0xffff_fffe.into()),
(vec![0xff, 0xff, 0xff, 0xff, 0x0f], 0xffff_ffff.into()),
]
}
fn success_cases_i32<T>() -> Vec<(Vec<u8>, T)>
where
T: From<i32>,
{
vec![
// From varint_test.cc EncodeSizeSigned32_MultiByte.
(vec![0xff, 0xff, 0xff, 0xff, 0x0f], i32::MIN.into()),
(vec![0xfe, 0xff, 0xff, 0xff, 0x0f], i32::MAX.into()),
]
}
#[test]
fn decode_test_u16() {
for case in success_cases_u8::<u16>() {
assert_eq!(u16::varint_decode(&case.0), Ok((case.0.len(), case.1)));
}
assert_eq!(u16::varint_decode(&[0x96]), Err(Error::OutOfRange));
}
#[test]
fn decode_test_i16() {
for case in success_cases_i8::<i16>() {
assert_eq!(i16::varint_decode(&case.0), Ok((case.0.len(), case.1)));
}
assert_eq!(i16::varint_decode(&[0x96]), Err(Error::OutOfRange));
}
#[test]
fn decode_test_u32() {
for case in success_cases_u8::<u32>()
.into_iter()
.chain(success_cases_u32::<u32>())
{
assert_eq!(u32::varint_decode(&case.0), Ok((case.0.len(), case.1)));
}
assert_eq!(u32::varint_decode(&[0x96]), Err(Error::OutOfRange));
}
#[test]
fn decode_test_i32() {
for case in success_cases_i8::<i32>()
.into_iter()
.chain(success_cases_i32::<i32>())
{
assert_eq!(i32::varint_decode(&case.0), Ok((case.0.len(), case.1)));
}
assert_eq!(i32::varint_decode(&[0x96]), Err(Error::OutOfRange));
}
#[test]
fn decode_test_u64() {
for case in success_cases_u8::<u64>()
.into_iter()
.chain(success_cases_u32::<u64>())
{
assert_eq!(u64::varint_decode(&case.0), Ok((case.0.len(), case.1)));
}
assert_eq!(u64::varint_decode(&[0x96]), Err(Error::OutOfRange));
}
#[test]
fn decode_test_i64() {
for case in success_cases_i8::<i64>()
.into_iter()
.chain(success_cases_i32::<i64>())
{
assert_eq!(i64::varint_decode(&case.0), Ok((case.0.len(), case.1)));
}
assert_eq!(i64::varint_decode(&[0x96]), Err(Error::OutOfRange));
}
#[test]
fn encode_test_u16() {
for case in success_cases_u8::<u16>() {
let mut buffer = [0u8; 64];
let len = case.1.varint_encode(&mut buffer).unwrap();
assert_eq!(len, case.0.len());
assert_eq!(&buffer[0..len], case.0);
}
}
#[test]
fn encode_test_i16() {
for case in success_cases_i8::<i16>() {
let mut buffer = [0u8; 64];
let len = case.1.varint_encode(&mut buffer).unwrap();
assert_eq!(len, case.0.len());
assert_eq!(&buffer[0..len], case.0);
}
}
#[test]
fn encode_test_u32() {
for case in success_cases_u8::<u32>()
.into_iter()
.chain(success_cases_u32::<u32>())
{
let mut buffer = [0u8; 64];
let len = case.1.varint_encode(&mut buffer).unwrap();
assert_eq!(len, case.0.len());
assert_eq!(&buffer[0..len], case.0);
}
}
#[test]
fn encode_test_i32() {
for case in success_cases_i8::<i32>()
.into_iter()
.chain(success_cases_i32::<i32>())
{
let mut buffer = [0u8; 64];
let len = case.1.varint_encode(&mut buffer).unwrap();
assert_eq!(len, len);
assert_eq!(&buffer[0..len], case.0);
}
}
#[test]
fn encode_test_u64() {
for case in success_cases_u8::<u64>()
.into_iter()
.chain(success_cases_u32::<u64>())
{
let mut buffer = [0u8; 64];
let len = case.1.varint_encode(&mut buffer).unwrap();
assert_eq!(len, case.0.len());
assert_eq!(&buffer[0..len], case.0);
}
}
#[test]
fn encode_test_i64() {
for case in success_cases_i8::<i64>()
.into_iter()
.chain(success_cases_i32::<i64>())
{
let mut buffer = [0u8; 64];
let len = case.1.varint_encode(&mut buffer).unwrap();
assert_eq!(len, case.0.len());
assert_eq!(&buffer[0..len], case.0);
}
}
}