pw_tls_client#
This module provides a facade that defines the public APIs for establishing TLS sessions over arbitrary transports. Two options of backends, pw_tls_client_mbedtls and pw_tls_client_boringssl, which are based on BoringSSL and MbedTLS libraries, are under construction.
The facade provides a class pw::tls_client::Session
with Open(), Read(),
Write() and Close() methods for TLS communication. An instance is created by
pw::tls_client::Session::Create
method. The method takes a
pw::tls_client::SessionOptions
object, which is used to configure TLS
connection options. The list of supported configurations currently include:
Host name of the target server. This will be used as the Server Name Indication(SNI) extension during TLS handshake.
User-implemented transport. The underlying transport for the TLS communication. It is an object that implements the interface of
pw::stream::ReaderWriter
.
The module will also provide mechanisms/APIs for users to specify sources of trust anchors, time and entropy. These are under construction.
Warning
This module is under construction, not ready for use, and the documentation is incomplete.
Prerequisites#
This module requires the following dependencies:
1. Entropy#
TLS requires an entropy source for generating random bytes. Users of this
module should provide one by implementing a backend to the
pw_tls_client:entropy
facade. The backend defaults to
pw_tls_client:fake_entropy
that does nothing.
2. Chromium Verifier#
BoringSSL backend uses chromium verifier for certication verification. If the
downstream project uses BoringSSL as the backend, the sources of the verifier,
which is part of the chorimum sources, needs to be downloaded in order for
//third_party/chromium_verifier
to build. It is recommended to use our
support in pw_package for downloading compatible and tested version:
pw package install chromium_verifier
Then follow instruction for setting dir_pw_third_party_chromium_verifier
to
the path of the downloaded repo.
3. Date time#
TLS needs a trust-worthy source of wall clock time in order to check
expiration. Provisioning of time source for TLS communication is very specific
to the TLS library in use. However, common TLS libraires, such as BoringSSL
and MbedTLS, support the use of C APIs time()
and getimtofday()
for
obtaining date time. To accomodate the use of these libraries, a facade target
pw_tls_client:time
is added that wraps these APIs. For GN builds,
specify the backend target with variable pw_tls_client_TIME_BACKEND
.
pw_tls_client_TIME_BACKEND
defaults to the pw_chrono::wrap_time_build_time
backend that returns build time.
If downstream project chooses to use other TLS libraires that handle time source differently, then it needs to be investigated separately.
4. CRLSet#
The module supports CRLSet based revocation check for certificates. A CRLSet file specifies a list of X509 certificates that either need to be blocked, or have been revoked by the issuer. It is introduced by chromium and primarily used for certificate verification/revocation checks during TLS handshake. The format of a CRLSet file is available in https://chromium.googlesource.com/chromium/src/+/refs/heads/main/net/cert/crl_set.cc#24.
Downstream projects need to provide a CRLSet file at build time. For GN builds,
specify the path of the CRLSet file with the GN variable
pw_tls_client_CRLSET_FILE
. This module converts the CRLSet file into
source code at build time and generates APIs for querying certificate
block/revocation status. See pw_tls_client/crlset.h
for more detail.
Chromium maintains its own CRLSet that targets at the general Internet. To use it, run the following command to download the latest version:
pw package install crlset --force
The –force option forces CRLSet to be always re-downloaded so that it is up-to-date. Project that are concerned about up-to-date CRLSet should always run the above command before build.
Toolings will be provided for generating custom CRLSet files from user-provided certificate files. The functionality is under construction.
Setup#
This module requires the following setup:
Choose a
pw_tls_client
backend, or write one yourself.If using GN build, Specify the
pw_tls_client_BACKEND
GN build arg to point the library that provides apw_tls_client
backend. To use the MbedTLS backend, set variablepw_tls_client_BACKEND
to//pw_tls_client_mbedtls
. To use the BoringSSL backend, set it to//pw_tls_client_boringssl
.Provide a pw_tls_client:entropy backend. If using GN build, specify the backend with variable
pw_tls_client_ENTROPY_BACKEND
.
Module usage#
For GN build, add //pw_tls_client
to the dependency list.
The following gives an example code for using the module on host platform. The example uses a Pigweed socket stream as the transport and performs TLS connection to www.google.com:
// Host domain name
constexpr char kHost[] = "www.google.com";
constexpr int kPort = 443;
// Server Name Indication.
constexpr const char* kServerNameIndication = kHost;
// An example message to send.
constexpr char kHTTPRequest[] = "GET / HTTP/1.1\r\n\r\n";
// pw::stream::SocketStream doesn't accept host domain name as input. Thus we
// introduce this helper function for getting the IP address
pw::Status GetIPAddrFromHostName(std::string_view host, pw::span<char> ip) {
char null_terminated_host_name[256] = {0};
auto host_copy_status = pw::string::Copy(host, null_terminated_host_name);
if (!host_copy_status.ok()) {
return host_copy_status.status();
}
struct hostent* ent = gethostbyname(null_terminated_host_name);
if (ent == NULL) {
return PW_STATUS_INTERNAL;
}
in_addr** addr_list = reinterpret_cast<in_addr**>(ent->h_addr_list);
if (addr_list[0] == nullptr) {
return PW_STATUS_INTERNAL;
}
auto ip_copy_status = pw::string::Copy(inet_ntoa(*addr_list[0]), ip);
if (!ip_copy_status.ok()) {
return ip_copy_status.status();
}
return pw::OkStatus();
}
int main() {
// Get the IP address of the target host.
char ip_address[64] = {0};
auto get_ip_status = GetIPAddrFromHostName(kHost, ip_address);
if (!get_ip_status.ok()) {
return 1;
}
// Use a socket stream as the transport.
pw::stream::SocketStream socket_stream;
// Connect the socket to the remote host.
auto socket_connect_status = socket_stream.Connect(ip_address, kPort);
if (!socket_connect_status.ok()) {
return 1;
}
// Create a TLS session. Register the transport.
auto options = pw::tls_client::SessionOptions()
.set_server_name(kServerNameIndication)
.set_transport(socket_stream);
auto tls_conn = pw::tls_client::Session::Create(options);
if (!tls_conn.ok()) {
// Handle errors.
return 1;
}
auto open_status = tls_conn.value()->Open();
if (!open_status.ok()) {
// Inspect/handle error with open_status.code() and
// tls_conn.value()->GetLastTLSStatus().
return 1;
}
auto write_status = tls_conn.value()->Write(pw::as_bytes(pw::span{kHTTPRequest}));
if (!write_status.ok()) {
// Inspect/handle error with write_status.code() and
// tls_conn.value()->GetLastTLSStatus().
return 0;
}
// Listen for incoming data.
std::array<std::byte, 4096> buffer;
while (true) {
auto res = tls_conn.value()->Read(buffer);
if (!res.ok()) {
// Inspect/handle error with res.status().code() and
// tls_conn.value()->GetLastTLSStatus().
return 1;
}
// Process data in |buffer|. res.value() gives the span of read bytes.
// The following simply print to console.
if (res.value().size()) {
auto print_status = pw::sys_io::WriteBytes(res.value());
if (!print_status.ok()) {
return 1;
}
}
}
}
A list of other demos will be provided in //pw_tls_client/examples/
Warning
Open()/Read() APIs are synchronous for now. Support for non-blocking/asynchronous usage will be added in the future.